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Highlights

1) Our study is the first to globally profile bacteria using 16S rRNA-based, next
generation sequencing (NGS) to catalog changes in subgingival microbiota during

orthodontic treatment.

2) There are dramatic alterations in subgingival microbiome during full fixed appliance

orthodontic treatment.

3) Although there is little consensus in microbial profile in teeth between subjects and
within the same subject, there are several consensus bacterial species that are

significantly changed during orthodontic treatment.

4) Although subjects were limited, the use of clear aligners (e.g., Invisalign) also
showed significant changes in subgingival microbiome during treatment, perhaps
surprising since a company-touted advantage of clear aligners is their perceived neutral

effect on oral hygiene.

5) Our study builds a strong foundation to further analyze the role of subgingival
microbiome in orthodontic tooth movement utilizing full fixed appliance and clear aligner

therapies.



ABSTRACT

Introduction: To evaluate changes in the subgingival microbiome before and during
fixed appliance orthodontic treatment using 16S rRNA-based high-throughput
sequencing. Methods: Sixteen patients (10 females and 6 males; ages 12y1m-33y3m)
were included in this study. Subgingival microbial samples were collected from 4 teeth
of each subject at three different times before and during full-fixed appliance treatment;
two patients received clear aligner therapy (i.e., Invisalign). DNA was extracted from the
samples, and 16S rRNA-based, next generation sequencing (NGS) was performed
catalog global profiles of subgingival microbiome during orthodontic treatment. Results:
The frequency of T forsythia, C rectus, and P nigrescens significantly increased after
placement of orthodontic appliances. For the other species, the frequency tended to
increase but no statistically significant differences were noted. The frequency of the
change, representing microorganisms not existing at t0 but newly developing at t1 and
t2, was higher at the molars than at the incisors. Although sample size was limited,
there also appeared to be significant changes in patients receiving clear aligner therapy.
Conclusion: Orthodontic treatment, whether utilizing full fixed appliances or clear
aligners significantly alters subgingival microbial composition and consensus bacterial
species that were altered were identified. Our experiments lay a solid foundation for

further analysis of subgingival microbiome during orthodontic therapy.



Introduction

In 2007, the National Institutes of Health (NIH) funded the human microbiome project
(HMP) to map microbial makeup of healthy humans in an effort to better understand
correlation of the microbiome with human health [1]. It was discovered that nearly
everyone routinely carries pathogens and microorganisms known to cause illnesses.
However, in healthy individuals pathogens cause no disease and simply coexist with
their host and the rest of the microbiome [1]. Recently, Sender et al. [2] published a
revised estimate of bacteria to human cell ratio to be nearly 1:1, an estimated 38 trillion
bacteria to 30 trillion human cells. Every human body contains personalized
microbiomes that are essential to maintain health, but also capable of eliciting disease.
For example, there is a concentration of 10"" bacteria/ml in the gut that provide both
beneficial and harmful effects [2]. This gut flora enhances our immune system, helps
absorb vitamins, and utilizes the food consumed. Conversely, the gut flora is also
associated with obesity, intestinal and systemic inflammation, and even cancer and
autism [3].

Bacterial diversity in dental plaque and oral biofilm is estimated to include at least
800 different species, consisting of a wide variety of gram-positive and gram-negative
bacteria [4]. The number of species is expected to rise into the thousands with the
application of next-generation sequencing (NGS) techniques [5, 6]. Within the oral
cavity, there are three main types of surfaces for bacteria to colonize: the hard surfaces
of teeth (i.e., supra- and sub-gingival), the soft tissues of the oral mucosa, and saliva

[7]. Furthermore, the oral microbiome is extremely dynamic because of the oral cavity’'s



continual exposure with the external environment [8]. Saliva has a bacterial
concentration of 10° bacteria/ml whereas dental plaque has an equivalent bacterial
concentration as the colon (i.e., 10" bacteria/ml) [2]. Studies have shown the oral
cavity’s microbiome to be a key source in the etiology of many oral and systemic
diseases [9, 10].

Dental plaque is a dynamic, complex biofilm and a microbial ecosystem [11].
Bacterial diversity in dental plaque or oral biofilm is estimated to include at least 800
different species, consisting of a wide variety of gram-positive and gram-negative
bacteria [4, 12-15]. The number of species is expected to rise into the thousands with
the application of next-generation sequencing (NGS) [5, 6]. In addition, many species in
kingdom Monera, also known as archaebacteria, have been associated with oral
disease such as chronic periodontitis [16, 17]. On top of the staggering number of
bacteria and archaebacteria, dental plaque comprises an assortment of micro-niches,
metabolic functions, and a web of inter- and intra-species interactions that accumulates
through sequential and ordered colonization by different bacterial strains and species
[18]. Biofilms develop under a wide range of different conditions, environments, and
factors (e.g., pH, availability of oxygen and nutrients, and interbacterial co-adhesion),
and these differences all have been demonstrated to lead to compositional changes in
oral biofilm [18]. Oral biofilm profiling has been hampered because it is extremely
difficult to define normal microbiota because of individual variation [19]. However, dental
health has been associated with the absence [20, 21] or elevation [22-24] of certain

species.



The composition of subgingival microbiota can be influenced by several factors
including oral hygiene regimens, dental restoratives, and orthodontic appliances. The
etiology of gingivitis and periodontitis is microbial infection, resulting in an imbalance
between the host and subgingival microorganisms [17]. Fixed appliances can change
the subgingival microbial environment by increasing plaque accumulation and
deepening the gingival sulcus [25, 26]. Orthodontic appliances generally increased the
level of periodontopathogens in subgingival plaques [27-29], however, several studies
have reported no significant difference [30] or a decrease in the level of
periodontopathogens decreased during orthodontic treatment due to metal corrosion,
which imposed toxic effects on the microorganism [31]. Thus, previous studies
regarding changes in periodontopathogens during orthodontic treatment have been
inconsistent.

All previous studies involving orthodontic full fixed appliances have used
microbial analysis methods such as candidate-based PCR or bacterial culture methods
[30], but these techniques suffer from selection biases or difficulty in growing cultures.
16S rRNA combined with next generation sequencing (NGS) has been used previously
to profile the microbiome in health and disease including periodontal diseases [32-36],
but never during orthodontic treatment. 16S rRNA/NGS catalogs all human and
microbial DNA in each of the samples, which is then sorted to identify specific genetic
signals found only in bacteria — such as the variable genes of bacterial ribosomal RNA
called 16S rRNA that can identify the presence of different microbial species [1]. The

purpose of this study is, for the first time, to track global changes in subgingival bacterial



composition before and after the placement of patients undergoing traditional full fixed

appliance orthodontic treatment.



Materials and Methods

Subjects

Sixteen subjects (10 Females and 6 Males; ages 16.2-17.5) were selected among
patients who arrived for orthodontic treatment at the Department of Orthodontics,
University of California San Francisco. Six patients failed to complete the entire study.
The study design was approved by the Ethics Committee (IRB 15-17868). Subjects
were enrolled according to the following criteria: (1) no known systemic disease; (2) no
use of antimicrobial, antifungal or anti-inflammatory drugs within 3 months before the
baseline examination; (3) no craniofacial anomalies; (4) not-pregnant; and (5) would be
undergoing treatment with fixed orthodontic appliances in the mandibular arch. Five
subjects (4 female and 1 male; Age ??) not undergoing orthodontic treatment were

selected as a control group.

Orthodontic bonding

All subjects received oral hygiene instructions by the same clinician in the form of both
verbal instructions and an instructional video by Dolphin Aquarium (Patterson
Technology). Subjects were instructed to continue their routine oral hygiene regiment.
All subjects received orthodontic therapy with fixed buccal appliances. For orthodontic
treatment, metal brackets (3M Unitek, GAC, Opal or GAC innovation) were bonded
directly with composite resin (find brand of composite) onto incisors and premolars.
Bands (Unitek and GAC) were cemented with polyacid-modified composite resin (Ultra
Band-Lok) onto molars. The arch wires were tied using o-chains (find brand of o-chains)

and in one case self-ligated.



Clear aligner therapy
Two patients received clear aligner trays (Invisalign) and treatment was administered

following instruction from Invisalign.

Collection of subgingival microbiota

Subgingival crevicular fluid samples were collected from the straight buccal gingival
crevice of the lower right first molar (30B), lower right central incisor (25B), lower left
first premolar (21B) and the straight lingual of lower left first premolar (21L). Samples
were collected at three different time points: before appliance placement (t0), 6 weeks
(t1) and 12 weeks (t2) into treatment. The sampling sites were isolated using full mouth
isolators (Dentsply, GAC) and the tongue held back with a mouth mirror when sampling
tooth 21L. Two sterile paper points size 30 (Dentsply, GAC) were inserted into the
gingival crevice and were left in situ for 60 s. These paper points were transferred
immediately into Eppendorf tubes containing 250 mL of 0.9% saline solution (Baxter,

Grainger) and frozen at -80 degrees F.

Periodontal Assessment

Immediately after sampling the sites, the probing depths (PD), GM-CEJ measurement,
clinical attachment loss (CAL), and bleeding on probing (BOP) were measured and
recorded in Axium periodontal charting system for all three time points. A sterilized
periodontal probe (find brand) was used to measurement PD and GM-CEJ. BOP was
observed and classified as present or not present after the periodontal measurements.

All sampling and measurements were performed by the same clinician. Once all the



samples were collected, they were sent to Jackson Laboratory in Bar Harbor, ME for

16S rRNA gene sequencing and analysis.

16S rRNA gene sequencing: Metagenomic DNA from the sampled paper points was
extracted using a PowerSoil ® DNA Isolation Kit. 16S rRNA V1-3 regions from the
metagenomic DNA were amplified wusing primers 27F and 534R (27F:5'-
AGAGTTTGATCCTGGCTCAG-3'and 534R: 5- ATTACCGCGGCTGCTGG-3").
Sequencing reads were processed by removing the sequences with low quality
(average qual <35) and ambiguous nucleotides (N’s); chimeric amplicons were removed
using UChime software. OTU was generated from the processed reads using an
automated pipeline. Each OTU was classified from phylum to genus level using the
most updated RDP classifier and training set. A taxonomic abundance table was
generated with each row as bacterial taxonomic classification, each column as sample
ID, and each field with taxonomic abundance. The abundance of a given taxon in a
sample was presented as relative abundance (the read counts from a given taxon

divided by total reads in the sample).

Statistical Analysis

Each sample was subsampled to the lowest number of read counts among samples in
the dataset and rarefied to 5000 read counts. The abundance of a taxon in a sample
was indicated as the relative abundance, which was calculated by dividing the number
of reads for a taxon by the total read counts of the sample. Alpha diversity indices

including richness and Shannon diversity were calculated as previously described. To



examine difference between control and bracket samples, we performed non-metric
multidimensial scaling (NMDS) plots with Bray-curtis distance. Microbiome stability in
both groups was determined by calculating the Bray-curtis dissimilarity from the same

samples across different time points.



Results (in preparation)

We obtained a mean of 23,755 sequences per sample and aggregated to a total of 402
operational taxonomic units (OTUs). In our braces cohort, we observed that there was a
significant increase in microbial richness between samples obtained before braces
intervention and six weeks after intervention among three of the four sites. Richness
stayed at a similarly high microbial richness by 12 weeks. This increase in richness was
accompanied by the decrease in Streptococcus, the most abundant genera found
across all samples. Similar trends were observed when looking at diversity among
samples by Bray Curtis. Samples taken before bracket treatment clustered more tightly
and differently compared to the two time points after, which clustered similarly among
each other. In addition, over 30% of our bracket cohort developed periodontitis
compared to 15% of our controls by six weeks of intervention. Overall samples that
were associated with periodontitis had a lower relative abundance of Streptococcus. We
also observed that there were fewer OTUs shared among the four sites at t0 relative to
t1 and t2, suggesting that the whole oral microbiome becomes more uniformed with
bracket treatment. Interestingly, the unique OTUs to each site over time did not remain

the same, suggesting the uniqueness of each tooth’s bacterial profile may be transient.



Discussion (in preparation)

One of the major problems associated with phase I, fixed appliance treatment is
its long duration, on average of 29 months [37]. There is empirical, clinical evidence that
increased bacterial plaque may decrease the rate of orthodontic tooth movement and
overall treatment times. In addition, the microbiome has recently been shown to
possess critical, much larger roles in health and disease, most notably with studies on
the effects of the gut microbiome on obesity [38], intestinal cancer [39], diabetes [40],
and autism [3]. Finally, the biological and mechanical changes induced by orthodontic
treatment would likely lead to changes in subgingival dental plaque. Thus, the
contribution of the microbiome, and specifically subgingival plaque, during orthodontic
therapy is an exciting possibility that has yet to be tested. Ultimately, manipulation of the
microbiome may be a therapeutic option to accelerate orthodontic tooth movement and

shorten treatment times.

We observed significant microbial changes in the oral microbiome of patients
with bracket intervention and the composition of these communities may contribute to

periodontitis.
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Figure Legends

Figure 1. Subgingival microbial profiles pooled for control (no treatment), full
fixed appliance (bracket), and clear aligner (invisalign) therapy. For all groups,
OTU_A1.streptococcus is the most common bacterial genus, followed by OTU_3.
Streptococcus and OTU_2. Veillonella. In the bracket group, tooth 30B showed an
overall decrease in OTU_1. Streptococcus, whereas 25B and 21B showed decreases at
t1 followed by increases at t2 although not to the same levels at t0. 21L profile remained
relatively the same at all three time points. In the control group, the levels of OTU_1.
Streptococcus had similar abundance at all three time points for 30B and 25B, an
overall decrease in 21B but an increase in 21L. The bracket group showed an overall
decrease in OTU_3. Streptococcus from t0 to t2, whereas the control group showed an
overall increase in OTU_3. Streptococcus, except for tooth 30B. OTU_2. Veillonella
increased for bracket tooth 25B and 21L but decreased in 30B and 21B. In the control
group, OTU_2. Veillonella increased in tooth 25B, decreased in 30B and 21B, and was
barely present in 21L. The amount of “other” bacteria was higher on the bracket group

than in the control group.

Figure. 2. Bray-Curtis, Richness, and Shannan diversity analyses. (A) The Bray-
Curtis analysis provides a measure of community composition differences between
samples based on OTU counts regardless of taxonomic assignment. Ordinations based
on this metric demonstrated a clear separation between control, bracket, and Invisalign

groups for tooth 30B. 25B and 21L were slightly more similar and 21B showed



significant separation between t0-t1 but were more similar at t1-t2. (B) The bracket
group demonstrated a significant increase in microbiome richness from t0 to t2,
whereas the control group only showed slight increases in microbiome richness from t0
to t2. (C) The Shannon diversity index (H) is commonly used to characterize species
diversity in a community. At t0 both bracket and control groups started with similar
diversity indexes. The bracket group showed an increase in diversity for tooth 30B and
21L at t1 and t2, but tooth 25B and 21B showed increases at t1 followed by decreases
at t3. In the control group, tooth 30B and 21B showed minimal changes in diversity, 25B
showed a decrease in diversity at t1 and an increase at t2, whereas tooth 21L showed a

decrease in diversity at t2.

Figure 3. Non-metric Multidimensial Scaling (NMDS) ordination analysis. To
evaluate the relationship between bacterial community composition and various
environmental factors, we performed NMDS analysis to represent pairwise Bray-Curtis

similarities between bacterial communities.

Figure 4. Global subgingival microbial profiles of individual subjects and teeth.

Figure 5. Venn diagram showing shared OTU or consensus bacterial species in

all teeth and time.

Figure 6. Venn diagram showing shared OTU or consensus bacterial species in

all teeth at the three time points.



Supplemental Figure 1. Top 10 up- and down-regulated bacterial species for each

tooth and subject at t0-t1 and t1-t2. Subjects are listed as A-O.
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Figure 5

BRACKET only: Shared otu in among all teeth among all timepoints
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