AAO Foundation Award Final Report

Dawei Liu DDS MS PhD Co-Investigator Secondary Investigators Award Type Willie and Earl Shepherd Fellowship Award Project Title Role of Mechanical Force in External Apical Root Resorption (EARR) During Orthodontic Tooth Movement: A Cellular / Molecular Approach Project Year 2007 Institution Marquette University School of Dentistry With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR), We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers – osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker – receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament – a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.		AAO Foundadon Awaru Final Keport
Award Type Willie and Earl Shepherd Fellowship Award Project Title Role of Mechanical Force in External Apical Root Resorption (EARR) During Orthodontic Tooth Movement: A Cellular / Molecular Approach Project Year 2007 Institution Marquette University School of Dentistry With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontic for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament – a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Principal Investigator	Dawei Liu DDS MS PhD
Award Type Willie and Earl Shepherd Fellowship Award Project Title Role of Mechanical Force in External Apical Root Resorption (EARR) During Orthodontic Tooth Movement: A Cellular / Molecular Approach Project Year 2007 Institution Marquette University School of Dentistry With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament — a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Co-Investigator	
Project Title Role of Mechanical Force in External Apical Root Resorption (EARR) During Orthodontic Tooth Movement: A Cellular / Molecular Approach Project Year 2007 Institution Marquette University School of Dentistry With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in peridontial ligament - a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Secondary Investigators	
Role of Mechanical Force in External Apical Root Resorption (EARR) During Orthodontic Tooth Movement: A Cellular / Molecular Approach Project Year 2007 Institution Marquette University School of Dentistry Summary/Abstract (250 word maximum) With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (L1PUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament - a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Award Type	Willie and Earl Shepherd Fellowship Award
Institution Marquette University School of Dentistry With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament – a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Project Title	(EARR) During Orthodontic Tooth Movement: A Cellular /
Summary/Abstract (250 word maximum) With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament – a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Project Year	2007
With the support of the 2007 Willie and Earl Shepherd Fellowship Award, I have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker - receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament - a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a research grant for NIH funding is being developed.	Institution	Marquette University School of Dentistry
Were the original, Yes. To our surprise we found more than what we hypothesized.	Summary/Abstract (250 word maximum)	have achieved the proposed goals of my career development. In this funding year, I continuously directed core courses in orthodontics for undergraduates and residents. I was engaged in planning curriculum, lecturing and supervising predoctoral students and orthodontic residents in the clinic. In addition, I supervised and participated in thesis projects of orthodontic residents. For my own research, based on what I achieved in 2006, I completed several experiments focusing on the mechanism of the role of mechanical loading in External Apical Root Resorption (EARR). We found that low intensity pulsed ultrasound (LIPUS, a form of mechanical load) activated MAPK (ERK1/2) and increased COX-2 production in cementoblasts and osteocytes, which mediated the up-regulation of anabolic bone markers - osteoprotegerin (OPG) and sclerostin (SOST), and simultaneous down-regulation of catabolic bone marker – receptor activator of nuclear factor kappa B ligand (RANKL). Interestingly, the responses of osteocytes were found to be more pronounced than those of cementoblasts. The remarkable results led us to propose a mechanism of LIPUS's prevention of root resorption; that is, LIPUS promotes cementogenesis but more importantly increases osteoclastic alveolar bone resorption which indirectly alleviates the compression-induced hyalinization in periodontal ligament – a pathological basis for the formation of root resorption. These data have been presented at several scientific meetings listed below. Also, a
	Were the original,	Yes. To our surprise we found more than what we hypothesized.

specific aims of the proposal realized?	
Were the results published? If not, are there plans to publish? If not, why not?	The manuscripts are in preparation now.
Have the results of this proposal been presented? If so, when and where? If not, are there plans to do so? If not, why not?	D Liu. (2008) A Novel Mechanism of Ultrasound' Effects on Orthodontic Root Resorption. 37 th American Association of Dental Research, April 2-5, Dallas, TX, USA D Liu. (2008) Low Intensity Pulsed Ultrasound (LIPUS) Synergistically Modulates SOST and OPG/RANKL in Osteocytes in Vitro. 54 th Orthopedic Research Society meeting, March 2-5, San Francisco, CA, USA